Intensity of spectral lines

- Degeneracy of States
- Population of the states

Degeneracy of Rotational States

each energy level shows a degeneracy of 2J+1

The number of molecules in an excited state with quantum number J, relative to the number of molecules in the ground state, N_J/N_0 is given by the <u>Boltzmann distribution</u>

$$\frac{N_J}{N_0} = e^{-\frac{E_J}{kT}} = e^{-\frac{BhcJ(J+1)}{kT}}$$

The second factor is the <u>degeneracy</u> of the rotational state, which is equal to 2J+1

• To summarize: Total relative population at energy $E_J \alpha$ (2J+1) exp (- E_J / kT) & maximum population occurs at nearest integral J value to :

$$J = \sqrt{\frac{kT}{2hcB}} - 1/2$$

- Since Jmax must be an integer, one takes the
- nearest integer value obtained from above Eq as the
- maximum.

$$J = \sqrt{\frac{kT}{2hcB}} - 1/2$$

One example from Kapoor Vol 4 page 449 for CO at 298K the value of J is equal to
6.82 and closest integer is 7

As J increases Multiciplity factor increases Exponential factor decreases

Effect of isotopes

From ${}^{12}C^{16}O \rightarrow {}^{13}C^{16}O$, mass increases, B decreases ($\propto 1/I$), so energy levels lower.

Comparison of rotational energy levels of ¹²CO and ¹³CO

Can determine:

(i) isotopic masses accurately, to within 0.02% of other methods for atoms in gaseous molecules;

(ii) isotopic abundances from the absorption relative intensities.

Example:

for ¹² CO	$J=0 \rightarrow J=1$ at	†	3.84235 cm ⁻¹
for ¹³ CO		3.67	7337 cm ⁻¹
Given : ¹² C = 12.0000 ;	O = 15.999	94	amu

THANK YOU

MANAS LAYEK ASSISTANT PROFESSOR BCC